

Tolerancing Method and Metrics for Imaging Spectrometers

Lori B. Moore, Pantazis Mouroulis

Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, 91109

Presented by Lori B. Moore

Purpose

Standardized Assessment of Imaging Spectrometers

- Imaging Spectrometer Performance Metrics
 - Along-Track, Cross-Track, and Spectral Response Functions
 - Smile and Keystone
- Useful for comparison of imaging spectrometers
- Can be used in the entire process of building a sensor
 - Design
 - Example: P. Mouroulis et al. Opt. Eng. 46(6) 2007, J. F. Silny, Proc. SPIE 9976, 2016
 - Tolerancing
 - Alignment
 - Example: H. A. Bender, Proc. SPIE 8158, 2011
 - Assessment of Final Sensor
 - Example: P. Mouroulis et al: Appl. Opt. 53(7), 2014
- Purpose of this talk:
 - Outline a method to tolerance imaging spectrometers using the response functions, smile, and keystone.

Overview

- Background
 - Imaging Spectrometers
 - Performance Metrics
 - Along-Track Response Function (ARF)
 - Cross-Track Response Function (CRF)
 - Spectral Response Function (SRF)
 - Smile and Keystone
- Tolerancing Setup
 - Where to apply the response functions.
 - Metric Functions
 - Summary
- Method
- Error Budget Example

Offner Imaging Spectrometers

Moon Mineralogy Mapper (M3) On Chandrayaan 1

Launched Oct. 2008

Pieters et al, Science 326, 2009 Green et al, J. Geophys. Res. Planets 116, 2011 Mouroulis et al, Opt. Engineering 46, 2007 Miniaturized full-range (500-2600 nm) spectrometer system

Van Gorp et al, J. Appl. Rem. Sens. 8, 2014

Dyson Imaging Spectrometers

Snow and Water Imaging Spectrometer (SWIS)

SWIS CubeSat, Artist's concept

Mouroulis et al, Proc. SPIE 9222, (2014) Bender et al, Proc. SPIE 9881, (2016)

Portable Remote Imaging Spectrometer, (PRISM)

Mouroulis, Green & Wilson, Opt. Express 16, 2008 Mouroulis et al, Appl. Opt. 53, 2014 https://prism.jpl.nasa.gov

Why use Response Functions

To first approximation, Pushbroom imaging spectrometers are

- Two optical systems
 - Telescope and Spectrometer
- Separated by an intermediate image plane at the slit.
- Decoupled in the scan axis.
 - The slit decouples the telescope from the spectrometer along the scan axis.
 - Telescope resolution dominates the spatial resolution along the scan axis.
 - Spectrometer resolution dominates the spectral resolution.
- Coupled in the orthogonal axis
 - The combined telescope and spectrometer determine the resolution along this spatial axis.
- Three response functions are needed.

Mielenz, J. Opt. Soc. Am. 57, 1967 Mouroulis & Green, Proc. SPIE 6667, 2007

Response Function Definition

To first approximation (incoherent approximation)

- Along-Track Response Function (ARF)
 - Convolution of
 - Telescope Y-line spread function
 - Slit
 - Motion blur term (optional)
- Cross-Track Response Function (CRF)
 - Convolution of
 - Full System X-line spread function
 - Detector pixel response
- Spectral Response Function (SRF)
 - Convolution of
 - Spectrometer-only Y-line spread function
 - Slit
 - Detector pixel response

- Smile and Keystone
 - Geometric errors of the spectrum registration.
- Uniformity includes variation in the shape of the response functions.
 - Reduce chromatic variations of the spatial response functions, ARF and CRF
 - Reduce spatial variations of the spectral response function, SRF

Tolerancing Run Setup

Where performance metrics are applied

- Six Tolerancing Runs
 - Three Optical Models
 - Telescope
 - Spectrometer
 - Full System

- Two Use Cases
 - Fabrication & Alignment
 - In-Use Thermal & Vibration

Tolerancing Merit Functions

- Smile and Keystone
 - Simple and rapidly calculated
 - Used as a tolerancing merit function
- Response Functions Full Width Half Max (FWHM)
 - Not rapidly calculated
 - Not used directly
- Proxy Merit Functions
 - Used to speed up tolerancing computation.
 - Examples: Wavefront, Enslitted Energy.
 - Criteria
 - Readily calculated
 - Appropriate for the optical system and stage of tolerancing
 - Correlate with the metric of interest

Tolerancing Summary

System	Process	Compensators	Feeds into	Merit function		
Telescope	Fabrication &	Telescope back	ARF, CRF	Telescope enslitted energy		
_	Alignment	focus				
Telescope	In Use Thermal &	None	ARF, CRF	Telescope enslitted energy (no		
	Vibration			mid freq. error)		
Spectrometer	Fabrication &	FPA: focus, tip &	CRF, SRF,	Smile, keystone, wavefront		
	Alignment	tilt	Smile, Keystone			
Spectrometer	In Use Thermal &	None	CRF, SRF,	Smile, keystone, wavefront		
	Vibration		Smile, Keystone			
Full system	Final Alignment/	Telescope focus (at	CRF, ARF, SRF	RMS Spot size in Y for		
	Verification	slit), FPA focus		telescope and in X for full		
				system		
Full system	In Use	Focus (optional)	CRF, ARF	RMS Spot size in Y for		
				telescope and in X for full		
				system		

Method

- Propose approximate optical component tolerances
 - Examples: displacements, radius of curvature, irregularity, tip/tilt
- Setup Tolerancing analysis for each optical system and process
- Run a Monte Carlo tolerancing analysis
 - Save 100's of perturbed systems.
 - Calculate the response functions for the worst systems.
 - Example: 90th percentile perturbed systems.
- Revise component tolerances and repeat as needed.
- Develop an error budget
 - Use the increase to the response function calculated for the 90th percentile systems.

Error Budget Example

	Spatial Sampling	Spectral Sampling	Spectral Resolution	Along- Track Resolution	Cross-Track Resolution	Smile	Keystone
	urad, along slit	nm, across slit	nm FWHM	times IFOV @FWHM	times IFOV @FWHM	spectral center vs. field	cross-track center vs. λ
Requirement	17.1 ± 2%	≤ 5	≤ 7	≤ 1.3	≤ 1.3	≤ 10%	≤ 10%
Design	16.97	4.46	6.67	1.24	1.24	1.80%	2.40%
Tolerance Budget #1: fabrication / alignment, compensated	0	0	0.03	0.036	0.024	2.30%	3.00%
Tolerance Budget #2: thermal & other in-use perturbations, no compensation	0	0	0.03	*0.043	*0.1	0.20%	0.70%
Tolerance Budget #3: in-use with focus compensator	-	-	-	0.013	0.016	-	-
Slit width (± 0.3 micron width)	-	-	0.04	0.01	-	0.20%	-
Grating Fabrication Errors	-	.001	-	-	-	-	-
Telescope Focal Length	0.6%	-	-	-	-	-	-
FPA response knowledge	-	-	0.3	-	0.3	-	-
Test/Model Uncertainty	-	-	0.2	0.1	0.1	1%	2%

Conclusion

- Outlined a method to tolerance imaging spectrometers.
- Based on imaging spectrometer performance metrics.
 - Response functions, smile and keystone.
- Showed when to apply each performance metric.
- Gave suitable proxy merits to speed up tolerancing.
- Gave an example Error Budget using imaging spectrometer metrics.

References

- [1] P. Mouroulis, R. Glenn Sellar, D. W. Wilson, J. J. Shea, and R. O. Green: "Optical design of a compact imaging spectrometer for planetary mineralogy", Opt. Eng. 46(6) 063001 (2007)
- [2] J. F. Silny: "Resolution modeling of dispersive imaging spectrometers", Proc. SPIE 9976, 99760A-1 (2016)
- [3] H. A. Bender, P. Mouroulis, M. L. Eastwood, R. O. Green, S. Geier, and E. B. Hochberg: "Alignment and characterization of high uniformity imaging spectrometers", Proc. SPIE 8158, 81580J (2011)
- [4] P. Mouroulis et al: "Portable Remote Imaging Spectrometer coastal ocean sensor: design, characteristics, and first flight results", Appl. Opt. 53(7) 1363-1380 (2014)
- [5] T. Skauli: "An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging," Opt. Express 20, 918-933 (2012)
- [6] H. A. Bender, P. Mouroulis, R. O. Green, D. W. Wilson: "Optical design, performance and tolerancing of next-generation airborne imaging spectrometers", Proc. SPIE 7812, 78120P (2010)

Backup

Along-Track Response Function (ARF)

NASA

Telescope Only

 Convolution of the Telescope Y-Line Spread Function and the Slit (and optionally, a Motion Blur Term)

Cross-Track Response Function (CRF)

Combined System

 Convolution of the Full System X-Line Spread Function and the Detector Pixel Response

Spectral Response Function (SRF)

Spectrometer Only

 Convolution of the Spectrometer only Y-Line Spread Function, the Slit, and the Detector Pixel Response.